Самовсасывающий насос для воды используется в качестве генератора напора в системах автономного водоснабжения. Причем сам насос отвечает и за подъем жидкости из скважины, и за дальнейшую транспортировку воды по трубам. То есть, такой насос пропускает поток «сквозь себя».
Такое конструкционное решение наделяет самовсасывающие агрегаты очень заманчивыми характеристиками, а именно:
- Поверхностные самовсасывающие насосы для воды можно установить за пределами скважины – на кронштейне у оголовка (в кессоне) или на платформе в пристройке или повальном помещении обслуживаемого строения. И благодаря такому позиционированию снижается общая трудоемкость процесса монтажа.
- Агрегаты очень легко обслуживаются и ремонтируются: ведь они установлены не под водой, а в относительно легкодоступном месте.
- Корпус агрегата можно изготовить из дешевого чугуна или конструкционной стали: ведь насос не погружен в воду. А дешевый корпус – это низкая цена всей конструкции.
- Насос можно укомплектовать действительно мощным мотором, а не пародией на силовой агрегат, монтируемой в узкий корпус погружного аналога. Ну а сильный мотор – это источник мощного напора. Поэтому самовсасывающие агрегаты «достают» воду даже из самых глубоких скважин.
Словом, самовсасывающий насос – это очень выгодное приобретение. И в данной статье мы рассмотрим типовые конструкции подобных агрегатов, а равно и принципы их работы. Надеемся, что эта информация поможет вам выбрать оптимальную модель, подходящую именно для вашей скважины.
Принцип работы бытового самовсасывающего насоса
Самовсасывающий агрегат состоит из следующих узлов:
- Корпуса, в котором монтируют нагнетательный механизм.
- Двигателя, соединяемого с корпусом посредством фланцевой муфты.
- Нагнетательного механизма вихревого или центробежного типа, работающего за счет крутящего момента вала двигателя.
Кроме того, в конструкцию насоса следует включить всасывающий и напорный шланги, соединительную арматуру для фиксации этих трубопроводов на штуцерах корпуса и эжектор.
Взаимодействие всех вышеописанных узлов осуществляется следующим образом:
- Двигатель генерирует крутящий момент на валу.
- Вал входит в корпус сквозь особое отверстие, защищенное от протечек уплотнителем.
- На торце вала крепят нагнетательный механизм – крыльчатку или импеллер. Вращение нагнетательного механизма генерирует всасывающее и вытесняющее усилие, за счет создания областей разрежения и повышенного давления внутри похожего на улитку корпуса. Причем, у корпуса есть два отверстия: впускное – оно располагается напротив зоны разрежения, и выпускное – оно расположено в области высокого давления.
- Эжектор располагается либо у корпуса, либо под водой – на торце всасывающего шланга. Его задача – повышение всасывающего усилия.
Подобная схема работы характерна для всех видов самовсасывающих насосов, но эффективность работы подобных устройств далеко не однородна.
И далее мы изучим причины падения и возрастания КПД, используя для этих целей обзор разновидностей самовсасывающих насосов.
Виды самовсасывающих насосов
Как говорилось выше: самовсасывающие насосы делятся на центробежные и вихревые модели. Кроме того, существуют насосы со встроенным эжектором, агрегаты с выносным эжектором и модели без эжектора.
Причем все варианты конструкции насосов функционируют по-разному, эксплуатируя основной принцип работы с разной эффективностью. Поэтому далее мы разберем принципы работы каждой разновидности самовсасывающего агрегата.
Устройство самовсасывающего центробежного насоса
Центробежный насос состоит из двигателя, корпуса-улитки и крыльчатки (диска или цилиндра с лопастями), закрепленной в полости корпуса на валу двигателя.
В верхней части корпуса имеется выпускное отверстие, оно расположено над крыльчаткой. В торцевой части корпуса имеется впускное отверстие – оно расположено напротив оси (вала) крыльчатки.
При вращении крыльчатки (от вала двигателя) центробежная сила создает разрежение в торцевой части корпуса (где расположено впускное отверстие), одновременно генерируя напорное усилие в верхней части корпуса (где расположено выпускное отверстие). В итоге, воду засасывает в корпус (по шлангу, закрепленному на впускном патрубке) и выталкивает из него (по шлангу, закрепленному на впускном патрубке).
Причем центробежные насосы можно включать лишь при условии полного заполнения водой внутренней полости корпуса-улитки. Крыльчатка не может создать всасывающее усилие из воздуха. И это самый большой недостаток таких насосов.
Принцип работы самовсасывающего вихревого насоса
Вихревые агрегаты лишены такого недостатка. Они оперируют не только водой, но и водно-газовой смесью, а при необходимости они могут сгенерировать всасывающее усилие даже на основе воздуха.
Подобная возможность объясняется особой конструкцией корпуса и заменой крыльчатки импеллером (рабочее колесо, качающее воздух во внутреннее пространство «улитки»). Там воздух смешивается с предварительно залитой в корпус водой и выходит сквозь отводящий трубопровод.
Причем в процессе «выхода» воздуха наблюдается эффект рециркуляции жидкости в камере, а сам проход газообразной среды сквозь плотную жидкость провоцирует зарождение разряжения во всасывающей трубе, которая «затягивает» воду в рабочую камеру насоса. Ну а после заполнения камеры вихревой агрегат начинает функционировать по схеме циркуляционного насоса.
Самовсасывающие насосы с эжектором
Эжектор работает по тому же принципу, что и вихревой насос. То есть, в прямоточный корпус устройства вводится тонкая трубочка, по которой подается поток с высокой плотностью и скоростью, а на выходе из трубки этот поток провоцирует зарождение области разрежения у выхода из корпуса эжектора. В итоге, на входе в корпус возникает всасывающее усилие.Оборудовав таким агрегатом насос или всасывающий шланг, можно увеличить глубину обслуживания скважины. После чего стандартные насосы начинают «доставать» воду не с «паспортных» 8-10 метров, а с отметки 15-20, а то и 25-30 метров.
Правда, при этом возрастает уровень шума и падает производительность самого насоса.
Но с этими недостатками можно справиться за счет увеличения мощности двигателя и удаления самого насоса за пределы жилой площади (в пристройку).
Причем насосы с выносным эжектором практически не шумят. Поэтому последняя мера для них неактуальна.
Отличие вихревых и центробежных насосов: что выбрать?
Центробежный агрегат отличается от вихревого аналога большими габаритами и практически бесшумной работой. Но такой насос «достает» воду лишь с 8-10 метров (без эжектора). Правда, его производительность меньше показателя вихревого агрегата почти на порядок.
Вихревой насос, по сути, оборудован встроенным эжектором (импеллер играет роль нагнетательной трубочки). Поэтому он изначально работает с большими глубинами (всасывающий шланг можно погружать в два раза глубже, чем у центробежного аналога). Но уровень шума вихревого агрегата предполагает лишь внешний монтаж оборудования. А вот производительность такого насоса в семь (!) раз больше, чем у центробежного аналога.
В итоге, вихревые насосы ставят на глубокие (более 10 метров) скважины, справедливо ожидая от них промышленной производительности. А центробежные насосы монтируют на относительно неглубокие скважины, питающие бытовой трубопровод.
Следовательно, для водоснабжения в промышленных масштабах нужен вихревой насос, а для бытового водопровода – бесшумный агрегат центробежного типа.
И это следует учитывать при выборе варианта конструкции самовсасывающего насоса.